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Abstract

The gas—vapor bubbles oscillating in the acoustic field are considered. The diffusion of gas and vapor components inside the bubble is
taken into account. The analytical formula is obtained for the amplitude of the phase-transition rate. On the base of this formula the
influence of the initial concentration of the gas was investigated. It is shown that the presence of relatively small amount of inert gas
in the bubble can considerably decrease the phase-transition rate. This is related with the mutual diffusion of the components and so
called “screen” effect of the inert gas at the bubble surface.

This is because the vapor component loses its ability to penetrate rapidly through the shielding gas layer on the surface of the bubble.

The effect of the kinetics of phase-transition rate (accommodation coefficient) on the intensity of phase-transition rate was also

studied.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical model for spherically symmetric process
around vapor-gas bubbles has been formulated in [1,2],
and their small oscillations have been investigated in detail
in [3-9]. The dynamics of vapor—gas bubbles has important
bearing, in particular, on sound propagation in the top of
the ocean. The description of the case in this situation is far
more complicated than in the case of a gas bubble or a
vapor bubble.

1.1. Fundamental equations

The system of equations describing radially symmetric
oscillations of a bubble filled with a liquid vapor and a
gas that is insoluble in the liquid is given in [7], where it
is assumed that a uniform pressure exists in the bubble
and interdiffusion of the components of the vapor—gas mix-
ture is taken into account.
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The equations of energy, continuity, and the state of the
phases in spherical Eulerian coordinates (r, #) have the form

[7]:
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where k is the vapor concentration, u is the specific energy,
T is the temperature, v is the velocity, R is the bubble


mailto:nail@sci.uob.bh

N.S. Khabeev ! International Journal of Heat and Mass Transfer 50 (2007) 3556-3560

3557

Nomenclature

thermal diffusivity

bubble radius

time derivative of the radius

radial Euler coordinate

time

temperature

density

pressure

vapor concentration in the bubble

diffusion coefficient

gas constant

radial velocity

time derivative of velocity

specific heat

thermal conductivity

specific energy

diffusion rate

rate of mass transfer per unit interface surface
coefficient for temperature jump at the interface
accommodation coefficient

viscosity

hydrostatic pressure

specific heat of vaporization

surface tension coefficient

specific heat ratio of gas—vapor mixture
circular frequency

nondimensional displacement of bubble surface
specific heat of the gas at constant pressure
specific heat of the gas at constant volume
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acoustic pressure amplitude

7> frequency of oscillations

nondimensional small deviation of the tempera-
ture

nondimensional small deviation of the concen-
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nondimensional small deviation of the pressure
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Subscripts

liquid

vapor

gas

at saturation

at bubble surface

in equilibrium
conditions in infinity
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radius, D is the interdiffusion coefficient, ¢, and ¢, are the
specific heats of the mixture at constant pressure and vol-
ume, ¢, is the specific heat of the liquid, A is the thermal
conductivity, w is the diffusion rate, v, is the particle veloc-
ity of the liquid at the bubble surface, and B is the gas
constant.

In the event of a nonequilibrium phase transition, the
temperature at the phase interface suffers a discontinuity,
the magnitude of which is given by the relation [10].

Ty, = xjT,/p,(R)\/B,T\. 9)
Here j is the phase-transition rate referred to unit surface,
and the subscripts o and s indicate the parameters at the
surface of the bubble and on the saturation line. A molec-
ular-kinetic analysis [10] of the structure of the temperature
discontinuity at the phase interface indicates that x = 0.32.

For water in normal conditions this jump of tempera-
ture us negligible.

The phase-transition Kkinetics are described by the
Hertz—Knudsen equation [11]:

[T} =Tes —

(10)

The standard value of the accommodation coefficient for
water is y = 0.04.

The pulsations of the bubble in a viscous incompressible
liquid in the presence of phase transition are described by
the equation [1]:

2j — Py — 20/R
Ry + 307, + H0e PP Z20/R_ v gy
2 Pe Py pe R

in which p,, is the pressure of the liquid far from the
bubble and ¢ is the coefficient of surface tension.

The boundary conditions are specified at the moving
boundary r = R(?):

oT, or

= v = Lvg, lp——— _:.a
Tg T[a, T T ¢ or iaT ]l
pV(R—v—wv) :pZ(R—w) =7, (12)
pg(R—v—wg) =0.
Here ¢ is the specific heat of vaporization. Also,
Ok oT
a—g—Oatr—O, T, =T, at r = co. (13)
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If the pressure uniformity condition holds, the energy
equation for the gas phase has the integral
dp 3

) 7FPUU +

_ p(B, — Bg)Dak or
dt R

B 5|R+(F*1))~5|R )
(14)

where I' = ¢,c, is the specific heat ratio for the gas—vapor
mixture, v, is the mass velocity of the vapor—gas mixture at
the bubble surface. The Clausius—Clapeyron equation far
from critical state, when p, < p,, can be written in the
form

dp, _Lp,

T T (15)
Let us consider the small oscillations of bubble under the
action of a sound pressure

Ploo) = Poo + P2 PA <P, (16)

where p_ is hydrostatic pressure, w is the frequency.
In this case the bubble radius can be described by the
real part of the expression:

o] < 1. (17)
The system of fundamental Eqgs. (1)—(17) is linearized. Let

P, 0, and K be small deviations of the pressure, tempera-
ture, and concentration from the equilibrium state:

R = Ry[1 + aexp(iowt)],

p:p0[1+P(T)]v T:T0[1+6(V,T)]7
k = ko[l + K(r,7)]. (18)
We assume that
P="P%" 0=0"(r)e", K=K"(r),
J :JOCHT, V — VOCHT,

(19)
V =vRy/D, t=t/tp, H =ioR}/D,
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After linearization and transformation to dimensionless
variables, making use of relations (17)—(19) and the condi-
tion p, < p, we rewrite the system of fundamental equa-
tions in the form
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Pe = Ry(p,/p,)"* /D is the diffusion Peclet number.

Solutions of Eqs. (24)—(26) satisfying the boundary con-
ditions at » = Ry, and » — oo as well as the condition of
finiteness of the temperature and concentration at the cen-
ter of the bubble can be written in the form
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Fig. 1. Dependence of the phase-transition rate amplitude on the
equilibrium vapor concentration. Ry = 0.1 mm; f = 500 Hz. Curves 1-4
correspond to the values of diffusion coefficient D = 2.5 x 107%;2.5 x
107,25 x107%2.5 x 1077 ("‘77), respectively.



N.S. Khabeev ! International Journal of Heat and Mass Transfer 50 (2007) 3556-3560 3559

K = A\J sinh(H'?¢) /¢,
A= 1[04, — k4J Jkog — (1 — 1/T')P]/sinh H}?,
J=AP, 0, =AsP, H,=H/Le,, H,=H]/Le,
Ay = (1 — ko) /3koBy sinh H'?, A3 = M + ked,, (32)
B (1+ H,*)M2y)79 + Bs(M — 1+ 1)T)
Boky — Ay + k3(1 — ko)ko(1 — B2/By)/3(1 — Ley)’
Ay = ko/ks + ke[Ao(1 + H\'*) /2o + B,
ks =3c,ToLey/1,
ke = [1+ yk\(1 — ko)MBy/BoB1)/3 k1,
B, =HY’cothHY* =1  (33)

A

B, = H'?cothH'? — 1,

From the system of Egs. (16)—(33) we can find analytical
expression for nondimensional rate of phase transitions
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ble. For the real value of D = 2 x 10> m?/s the presence
of 10% of inert gas decreases the amplitude of phase-tran-
sition rate on 50%.

Fig. 2 presents the dependence of the phase-transition
amplitude as function of equilibrium vapor concentration
for different value of accommodation coefficient.
Ry = 0.1 mm, f = 500 Hz. Curves 1-3 correspond to the
values of y =0.4; 0.04; 0.004, respectively. Calculations
show that for y > 0.04 the phase-transition rate depen-
dence on concentration practically coincide with limiting
equilibrium case (y = 0o). Thus the effect of y (if ¥ >
0.04) is practically the same as in equilibrium case. For
large content of inert gas in the bubble (ky < 0.5) accuracy
of the value of y is not very important. For vapor bubbles
small variations of the value of accommodation coefficient
in the area y < 0.04 leads to significant change of phase-
transition rate. For these cases the correct choice of this
parameter is necessary.

1), (34)

E=1-3IB,(M -1+ 1/I')/H, — TE\E,
Ay = 3TkDpyl(pe/p..)" [ Ro,

Calculations were made according to (34) for the bubbles
containing steam and air, oscillating in water. Hydrostatic
pressure was 0.1 MPa.

Fig. 1 presents the dependence of phase-transition
amplitude as function of equilibrium vapor concentration.
Ry=0.1 mm; f=500Hz (f = w/2n). Curves 1-4 corre-
spond the values of diffusion coefficient:

D =25x10%25x 10725 x 10%2.5 x 107(™),
respectively. One can see that the diffusional retardation of
phase transition rate takes place. Dependence is strictly
nonlinear. When &y < 0.5 the properties of the vapor—gas
bubble are similar to the properties of a gas bubble. When
ko < 0.2 the phase-transition rate is practically zero. The
presence of very small amount of inert gas in the bubble
reduces the phase-transition rate significantly. This effect
is particularly conspicuous for small values of the diffusion
coefficient. This is attributable to the fact that the phase-
transition rate decreases with a decrease in D, since the
vapor component loses its ability to penetrate rapidly
through the shielding gas layer on the surface of the bub-

" k(1 — ko)ko(1 — Ba/B1)/3(1 — Leo) + Ba (ks — ke) — ko/ks — ke(1 + H*>) ) 20

Fig. 3 shows the effect of the parameter Q = wR;/D on
the dependence of phase transition rate as function of the
equilibrium vapor concentration. Ry = 10> m; curves 1-4
correspond to the values of / = 10%10%10% 10° Hz. In
[4] for every value of R, it was shown the existence of
critical vapor concentration £* at which the amplitude of
the bubble oscillations grows without bound. Because of
the linearity of the problem this critical concentration k*
will be also critical for the amplitude of phase-transition
rate.

The resonance effect is decreasing with the growth the
value of Q.

This decrease takes place even for Q > 10. The further
growth of Q leads to the decrease of phase-transition rate
up to zero. The dependence of the amplitude of phase-tran-
sition rate as function of concentration became monotonic
for large value of Q. This follows also from formula (34) if
we will calculate limit when Q — oc.

The experimental existence of founded effect was estab-
lished earlier (see for example [12]).
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Fig. 2. The effect of accommodation coefficient on the dependence of
phase-transition rate amplitude on the vapor concentration. Ry = 0.1 mm;
f =500 Hz. Curves 1-3 correspond to the values of y = 0.4;0.04;0.004,
respectively.

2. Conclusion

The effect of phase-transition retardation is investigated
for the radial oscillations of vapor—gas bubbles in liquids.
It is shown that the presence of a small amount of inert
gas can lead to considerable decrease of the phase transi-
tion rate.
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